Difference between revisions of "Preservation"
(→Processes not in the management system) |
(→Description 4) |
||
Line 85: | Line 85: | ||
==Case studies== | ==Case studies== | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
Revision as of 14:26, 9 July 2014
Template:CommentContents
Definition
Preservation is The process of keeping knowledge in its original state
Summary
Preservation belongs to maintenance processes. Template:Knowledge process navigation
Purpose
To preserve organisation's most explicit knowledge in archival form. As an organization matures, the preservation of implicit and tacit knowledge will become more dominant, leading to preservation of process knowledge (work flow).
The main purpose of all KP efforts is to develop a KP mechanism in which knowledge is being preserved as it is created. In this way all types of knowledge — including explicit, implicit and tacit — will be captured. In order to achieve this, different methods and tools must be employed. Within the KM context, it is obvious that nuclear KP plays a vital role. Preserving existing nuclear knowledge, specialist expertise, and in general preventing the loss of vital technical and historical information is starting to be recognized as strategically important to the nuclear industry, in particular for nuclear facilities. As such, the development of KP approaches and tools based on innovative approaches, including the use of modern information technology, are becoming a necessity.
Organizations that do not pay attention to KP may face negative consequences (such as suffering losses or even worse, bankruptcy) if critical knowledge required by an organization is not preserved. In the case of the nuclear industry, if critical knowledge associated with regulation, construction, design, maintenance, operation and decommissioning is not preserved it can lead to incidents, accidents and other significant events. An example is the Okiluto-3 EPR NPP currently being constructed in Finland. The project experienced construction and welding problems because critical knowledge associated with methods and quality assurance had been lost among local contractors in Finland. This resulted in delays in construction.
One of the questions being raised concerning the 'nuclear renaissance' is the availability of critical knowledge required to forge large pressure vessels and steam generators. Recent surveys of suppliers indicate this capability has been lost in many countries because there was a long period of time in which no new reactors were built. It is believed that organizations which pay attention to KP and make it a part of their objectives tend to keep a competitive edge. This is likely the reason that more mature organizations are now concerned about the preservation of institutional memory. An underlying benefit of KP is that it helps to improve work processes and therefore aids in transforming a regular organization into a ‘learning organization’.
Depending on an organization’s level of KM maturity (i.e. the phase of development in KM processes), it may need to embark on KP as a means of preserving critical knowledge to secure its future.
Source: Comparative Analysis of Methods and Tools for Nuclear Knowledge Preservation
Connection to other main categories
To see how this process is connected to KM challenges, benefits and tools, please refer to Portal:Maintenance.
Contribution to the management system
Recommendation
Table of business processes
This knowledge process is embedded in the following business processes in the Integrated management system. Each process has a score commensurate with its relevance to this process.
Business process | Impact |
---|---|
Configuration management | ? |
Technical skill resources | ? |
Lessons learned | ? |
Information technology | ? |
Operating experience | ? |
Peer review | ? |
Technology development | ? |
Processes not in the management system
- The archival perspective to preservation: this view of KP is based on objectives and processes associated with traditional digital or paper based documents or records of archival and storage processes and systems (such as library and records services in many organizations);
- Business process re-engineering (BPR) and the transaction theory perspective: this view of KP emphasizes on-line information systems (also referred to as OMS) such as enterprise application software (EAS),enterprise resource planning (ERP) systems, information systems (IS), information and communications technology (ICT), and information management systems (IMS) collectively. These systems enable integrated work flow and cross-functional processes in organizations and support institutional memory by capturing and preserving the transactional history of work flow and business processes within a firm;
- Human resource and organizational learning perspective: this view of KP focuses on those programmes, processes, and initiatives within a firm that ensure human resource capability is maintained and core competencies are sustained (such as formal training programmes and supporting methods, processes, and technology that facilitate tacit knowledge retention via knowledge transfer and sharing mechanisms);
- Project based perspective: this view of KP focuses on the processes and tools needed to ensure adequate capture of design detail and rationale, project records and documentation, and to safely preserve this information in a repository that will be accessible (and hopefully maintainable) in the future. Most project groups focused on design and engineering use this view. The knowledge preserved will be important and utilized throughout the life cycle of a facility;
- Production process data perspective: this view of KP focuses on operational history data (e.g. data collected from real time monitoring and control systems, system health monitoring data, laboratory information systems, on-line monitoring systems, statistical process control systems, etc.) and is used to support information and knowledge needed for sustained equipment or production reliability, economics and safety;
- Design basis information maintenance perspective: this view of KP focuses on the ongoing maintenance and configuration management of design data, requirements, constraints, assumptions and rationale, change history, etc., as changes are required to maintain a plant (such as maintenance of design manuals, drawings, licensing submittals, safety requirements, safety cases, equipment qualification records, etc.).
It is not uncommon for individuals within an organization that has not implemented any coordinated, company wide KP policies and programmes to view KP quite differently (and sometimes quite narrowly), depending upon which of these processes primarily involve them, and the associated perspectives.
Source: Comparative Analysis of Methods and Tools for Nuclear Knowledge Preservation
KM tools
For all the KM tools that help implement the knowledge process see Category:Maintenance process tools
Case studies
References
[1]
Related articles
Category:Maintenance processes