Difference between revisions of "Nuclear knowledge"
DavidBeraha (Talk | contribs) (→Description) |
DavidBeraha (Talk | contribs) (→Description) |
||
Line 55: | Line 55: | ||
'''Source:''' [[Knowledge Management for Nuclear Research and Development Organizations]] | '''Source:''' [[Knowledge Management for Nuclear Research and Development Organizations]] | ||
− | |||
− | |||
− | |||
− | |||
− | |||
==Other related articles== | ==Other related articles== |
Revision as of 17:52, 6 November 2013
Template:Zoltan Template:Monica
,Contents
Definition
Nuclear knowledge is Knowledge in the nuclear domain. Nuclear knowledge is characterised by a unique combination of factors which make the management of it particularly challenging, these are: fragmentation, safety, complexity, government involvement, high costs, long timescales, international cooperation and education.
Summary
...
Description
A wide variety of stakeholders will legitimately claim an interest in managing, using, applying, developing and sharing nuclear knowledge — each with their own objectives, requirements, and limitations.
Nuclear knowledge is unique in many ways — different from knowledge developed and used in other industrial domains. It is complex, involving high development costs often requiring significant governmental support. Nuclear knowledge must be developed and retained over long time frames to service operational nuclear facilities and over even longer time frames to enable global sustainable growth. Special constraints exist due to the dual (peaceful and non-peaceful) nature of nuclear technology, and these characteristics have often led to serious public concerns. As further elucidated below, these unique characteristics make efforts to effectively manage nuclear knowledge most desirable or even mandatory.
In response to an increased awareness of the importance to manage nuclear knowledge in many Member States, the IAEA has published a number of technical guidance documents (including nuclear management objectives [9]) containing the highest level issues for knowledge management that are commonly agreed as being relevant and applicable to activities in the nuclear sector.
Basic scientific nuclear knowledge has been accumulating for around one hundred years but this has been further enhanced through practical experience of its application over the last sixty years. The combination of this ‘pure and applied’ nuclear knowledge has brought our understanding to its current mature stage, with significant contributions being made to a wide variety of secondary applications. However, this extensive portfolio of nuclear knowledge — often derived with government support — is beginning to exceed present commercial demand with the consequence that some of it is in danger of being permanently lost. The risk is compounded by the fact that there is an absence of effective systems for transferring the knowledge between successive generations.
Nuclear knowledge is different from the knowledge developed and used in other industrial domains. It is very complex and has high investment costs, which often require massive governmental support. It must be developed and retained over very long timescales to service operational nuclear facilities and even longer timescales to enable global sustainable growth. Special constraints exist to limit its unrestricted dissemination, due to the dual (civil and military) uses of nuclear technology. These unique characteristics mean that there is an unwritten obligation for the industry to effectively manage nuclear knowledge.
Complexity
High costs
Long term development and utilization
Importance of international cooperation
Nuclear knowledge has been used successfully in the past by many countries as a catalyst for socioeconomic development. It is becoming increasingly clear that a wide range of benefits can be obtained from the appropriate use of nuclear power and other nuclear applications. However, the ‘appropriate’ use presupposes a certain level of maturity in the industrial and societal context, especially in terms of accountability and decision making systems and a general awareness and understanding of nuclear issues beyond mere technological aspects. Hence, it is not surprising that international cooperation has played a crucial role in the development of nuclear knowledge right from the very beginning of its application for civilian purposes. Indeed, the importance of international cooperation to any country embarking on a nuclear programme today is a unique characteristic of nuclear science and technology.
Balance between sharing and protection
The inherently dual nature of nuclear technology necessitates constraints on the sharing of nuclear knowledge. In contrast to knowledge in other scientific domains, the sharing and use of nuclear knowledge are restricted due to concerns about nuclear safeguards and proliferation. On the other hand, ensuring safety requires ready availability of high quality, well documented experience and knowledge. The risk to nuclear safety from the loss of or lack of access to nuclear knowledge could be very high. Thus an appropriate balance between nuclear safety and safeguard requirements needs to be established in managing nuclear knowledge.
Government involvement
Owing to the long term return on investment compared with other industries, as well as safety, security and non-proliferation issues, a high level of government involvement and close monitoring of activities is essential during the development, application and transfer of nuclear knowledge. This involvement is necessary not only to underwrite a large portion of the development cost but also to manage nuclear liability (including its trans boundary nature), nuclear safety concerns and the prevention of nuclear knowledge misuse under all circumstances.
Source: Knowledge management for radioactive waste management organisations
Source: Guide on nuclear knowledge management
Description
Template:Characteristics of nuclear knowledge
Source: Knowledge Management for Nuclear Research and Development Organizations
Historical development of nuclear knowledge
Current status of nuclear knowledge